首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28篇
  免费   2篇
  国内免费   2篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2005年   3篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
排序方式: 共有32条查询结果,搜索用时 31 毫秒
11.
Static displacements in Pacinian corpuscles (PCs) were measured using video microscopy. Mechanical stimuli of 10–40?µm steps were applied to the PC capsule surfaces using cylindrical contactors with different diameters. Displacements parallel to the stimulation axis were measured at various locations in the focal plane of the optical setup. In contrast to previous data in the literature, the displacements within the corpuscle were found to be linearly related to the indentation amplitude. Displacements decreased as a function of lamella depth, with a more negative slope close to the surface and less negative slope at deeper locations. The experimental data were compared to the predictions of a previous mechanical model, and to the results of two new models: () elastic semi-infinite continuum model; () ovoid isotropic finite-element model. Although the previous model did not specify displacement boundary conditions, it predicted the current experimental results well. On the other hand, the experimental displacements were found to be smaller than those predicted by the semi-infinite continuum and finite-element models. However, both semi-infinite continuum and finite-element models yielded close results, which show that the three-dimensional ovoid geometry of the corpuscle is not the primary factor for determining the displacements in physiological conditions. Furthermore, simulations with the finite-element model using a wide range of material properties yielded similar results. This supports the hypothesis that a homogeneous isotropic model for the PC cannot predict experimental results. The modeling analyses suggest that the experimental results are largely affected by the displacement of the incompressible interlamellar fluid and the layered structure of the corpuscle.  相似文献   
12.
Previously we reported that the multifunctional cylindrical inclusion (CI) protein of turnip mosaic virus (TuMV) is targeted to endosomes through the interaction with the medium subunit of adaptor protein complex 2 (AP2β), which is essential for viral infection. Although several functionally important regions in the CI have been identified, little is known about the determinant(s) for endosomal trafficking. The CI protein contains seven conserved acidic dileucine motifs [(D/E)XXXL(L/I)] typical of endocytic sorting signals recognized by AP2β. Here, we selected five motifs for further study and identified that they all were located in the regions of CI interacting with AP2β. Coimmunoprecipitation assays revealed that alanine substitutions in the each of these acidic dileucine motifs decreased binding with AP2β. Moreover, these CI mutants also showed decreased accumulation of punctate bodies, which enter endocytic-tracking styryl-stained endosomes. The mutations were then introduced into a full-length infectious clone of TuMV, and each mutant had reduced viral replication and systemic infection. The data suggest that the acidic dileucine motifs in CI are indispensable for interacting with AP2β for efficient viral replication. This study provides new insights into the role of endocytic sorting motifs in the intracellular movement of viral proteins for replication.  相似文献   
13.
Abstract

Molecular dynamics simulation has been used to study diffusion of methane at ambient temperature in cylindrical pores at very low densities. The cylinders were modelled as a continuum solid which interacts with the methane in the radial direction only. At the lowest densities, the VACF method does not yield reliable values of the self diffusion coefficient, Ds , but a suitable choice of time step and run length enables values of Ds to be found from MSD plots that are below the classical Knudsen diffusion coefficients. When density is increased, Ds passes through a maximum although the adsorption isotherm remains inside the Henry law region. Maxima are found for two cylinder radii and for two adsorbent field strengths. The existence of a maximum is attributed to transient intermolecular interactions. Analysis of a molecular trajectory demonstrates that long diffusion paths can be triggered by the rare event of an intermolecular encounter which forces a molecule into the repulsive part of the wall potential. At sufficiently high density, subsequent collisions quench the tendency towards long paths, and Ds decreases again. The issue of simulation artefact as a source of these observations is discussed.  相似文献   
14.
We report Molecular Dynamics calculations of radial density profiles and self-diffusion coefficients of Lennard-Jones fluids in a cylindrical pore of radius 2σ, for a wide range of temperatures and densities. At n p σ3 = 0.825 the self-diffusion coefficient parallel to the pore walls D *. follows a monotonic (nearly linear) increase with kT/ε and is very similar to that of the bulk self-diffusion coefficient D b *. At n p σ3 = 0.4 and kT/ε ≤ 1.0 the curve of D * vs. kT/ε shows a distinct inflection in the region 0.7 ≤ kT/ε ≤ 0.9 and values of D * are much less than D b * decreasing to near solid state values at very low temperatures. At the highest temperature studied, kT/ε = 2.98, D * is almost inversely proportional to density and in a fairly close agreement with that of D b *. At KT/ε = 0.49, D * is much smaller than D b *. The motion of adsorbate particles normal to the walls is also discussed.  相似文献   
15.
报道弯孢属的两个新种,柱弯孢Curvularia cylindrica和拟棒弯孢Curvulariatra chycarpi,前者生于葱Allium fistulosum上,后者生于棕榈Trachycarpus fortunei上。柱弯孢的分生孢子柱状细长,4个隔膜,这是区别于其它种的显著特征。拟棒弯孢的形态与棒弯孢C.clavata B.L.Jain近似,但是其分生孢子明显的大于后者。研究标本保存在山东农业大学植物病理学标本室(HSAUP)。  相似文献   
16.

Background and Aims

Many wetland species form aerenchyma and a barrier to radial O2 loss (ROL) in roots. These features enhance internal O2 diffusion to the root apex. Barrier formation in rice is induced by growth in stagnant solution, but knowledge of the dynamics of barrier induction and early anatomical changes was lacking.

Methods

ROL barrier induction in short and long roots of rice (Oryza sativa L. ‘Nipponbare’) was assessed using cylindrical root-sleeving O2 electrodes and methylene blue indicator dye for O2 leakage. Aerenchyma formation was also monitored in root cross-sections. Microstructure of hypodermal/exodermal layers was observed by transmission electron microscopy (TEM).

Key Results

In stagnant medium, barrier to ROL formation commenced in long adventitious roots within a few hours and the barrier was well formed within 24 h. By contrast, barrier formation took longer than 48 h in short roots. The timing of enhancement of aerenchyma formation was the same in short and long roots. Comparison of ROL data and subsequent methylene blue staining determined the apparent ROL threshold for the dye method, and the dye method confirmed that barrier induction was faster for long roots than for short roots. Barrier formation might be related to deposition of new electron-dense materials in the cell walls at the peripheral side of the exodermis. Histochemical staining indicated suberin depositions were enhanced prior to increases in lignin.

Conclusions

As root length affected formation of the barrier to ROL, but not aerenchyma, these two acclimations are differentially regulated in roots of rice. Moreover, ROL barrier induction occurred before histochemically detectable changes in putative suberin and lignin deposits could be seen, whereas TEM showed deposition of new electron-dense materials in exodermal cell walls, so structural changes required for barrier functioning appear to be more subtle than previously described.  相似文献   
17.
High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years.Biomimicking from nature may offer the potential for lightweight design. In the viewpoint of mechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.  相似文献   
18.
High load-bearing efficiency is one of the advantages of biological structures after the evolution of billions of years. Biomimicking from nature may offer the potential for lightweight design. In the viewpoint ofrnechanics properties, the culm of bamboo comprises of two types of cells and the number of the vascular bundles takes a gradient of distribution. A three-point bending test was carried out to measure the elastic modulus. Results show that the elastic modulus of bamboo decreases gradually from the periphery towards the centre. Based on the structural characteristics of bamboo, a bionic cylindrical structure was designed to mimic the gradient distribution of vascular bundles and parenchyma cells. The buckling resistance of the bionic structure was compared with that of a traditional shell of equal mass under axial pressure by finite element simulations. Results show that the load-bearing capacity of bionic shell is increased by 124.8%. The buckling mode of bionic structure is global buckling while that of the conventional shell is local buckling.  相似文献   
19.
In this paper, we report a comprehensive analysis of the adsorption of argon in cylindrical pores of finite length having different dimensions and adsorbent energies. We determine the mechanisms of adsorption and desorption in the hysteresis region, and use the recently introduced mid-density scheme, as an approximate method, to determine the equilibrium transition, which is found to lie wholly within the loop and closer to the desorption branch. For a given loading in the hysteresis region, we determine the microscopic behaviour of two metastable states (one on the adsorption branch and the other on the desorption branch) and the stable equilibrium state. The adsorption metastable state is characterised by a bulging adsorbed layer, while the desorption metastable state is characterised by a liquid bridge with a meniscus at each end in the shape of a long elliptical cone. The equilibrium state has a configuration that displays a liquid bridge with hemispherically shaped menisci having areas less than those of the two menisci in the desorption metastable state.  相似文献   
20.
Aim A key life‐history component for many animals is the need for movement between different geographical locations at particular times. Green turtle (Chelonia mydas) hatchlings disperse from their natal location to spend an early pelagic stage in the ocean, followed by a neritic stage where small juveniles settle in coastal areas. In this study, we combined genetic and Lagrangian drifter data to investigate the connectivity between natal and foraging locations. In particular we focus on the evidence for transatlantic transport. Location Atlantic Ocean. Methods We used mitochondrial DNA (mtDNA) sequences (n = 1567) from foraging groups (n = 8) and nesting populations (n = 12) on both sides of the Atlantic. Genetic data were obtained for Cape Verde juvenile turtles, a foraging group not previously sampled for genetic study. Various statistical methods were used to explore spatial genetics and population genetic structure (e.g. exact tests of differentiation, Geneland and analysis of molecular variance). Many‐to‐many mixed stock analysis estimated the connectivity between nesting and foraging groups. Results Our key new finding is robust evidence for connectivity between a nesting population on the South American coast (25% of the Surinam nesting population are estimated to go to Cape Verde) and a foraging group off the coast of West Africa (38% of Cape Verde juveniles are estimated to originate from Surinam), thus extending the results of previous investigations by confirming that there is substantial transatlantic dispersal in both directions. Lagrangian drifter data demonstrated that transport by drift across the Atlantic within a few years is possible. Main conclusions Small juvenile green turtles seem capable of dispersing extensively, and can drop out of the pelagic phase on a transatlantic scale (the average distance between natal and foraging locations was 3048 km). Nevertheless, we also find support for the ‘closest‐to‐home’ hypothesis in that the degree of contribution from a nesting population to a foraging group is correlated with proximity. Larger‐sized turtles appear to feed closer to their natal breeding grounds (the average distance was 1133 km), indicating that those that have been initially transported to far‐flung foraging grounds may still be able to move nearer to home as they grow larger.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号